
13 Standard algorithms
Each new program has its own challenges, its own unique features. But the same old
subproblems keep recurring. So, very often at some point in your program you will
have to search for a key value in an ordered collection, or sort some data. These
subproblems have been beaten to death by generations of computer theoreticians and
programmers. The best approaches are now known and defined by standard algorithms.

This chapter presents four of these. Section 13.1 looks at searching for key values.
The next three sections explore various "sorting" algorithms.

The study of algorithms once formed a major part of sophomore/junior level studies
in Computer Science. Fashions change. You will study algorithms in some subsequent
subjects but probably only to a limited extent, and mainly from a theoretical perspective
while learning to analyse the complexity of programs.

13

13.1 FINDING THE RIGHT ELEMENT: BINARY SEARCH

The code in the "keyword picker' (the example in section 12.4) had to search linearly
through the table of keywords because the words were unordered. However, one often
has data that are ordered. For instance you might have a list of names:

"Aavik", "Abbas", "Abbot", "Abet",
…
"Dyer", "Dzieran", "Eady", "Eames",
…
"O'Keefe", "O'Leary", …
…
"Tierney", "Tomlinson", "Torrecilla", …
…
"Yusuf", "Zitnik", "Zuzic", "Zylstra"

If you are searching for a particular value, e.g. Sreckovic, you should be able to take
advantage of the fact that the data are ordered. Think how you might look up the name

420 Standard Algorithms

in a phone book. You would open the book in the middle of the "subscriber" pages to
find names like "Meadows". The name you want is later in the alphabet so you pick a
point half way between Meadows and Zylstra, and find a name like Terry. Too far, so
split again between Meadows and Terry to get to Romanows. Eventually you will get
to Sreckovic. May take a bit of time but it is faster than checking of Aavik, Abbas,
Abbot, ….

Subject to a few restrictions, the same general approach can be used in computer
programs. The restrictions are that all the data must be in main memory, and that it be
easy to work out where each individual data item is located. Such conditions are easily
satisfied if you have something like an ordered array of names. The array will be in
memory; indexing makes it easy to find a particular element. There are other situations
where these search techniques are applicable; we will meet some in Part IV when we
look at some "tree structures".

The computer version of the approach is known as "binary search". It is "binary"
because at each step, the portion of the array that you must search is cut in half ("bi-
sected"). Thus, in the names example, the first name examined ("Meadows")
established that the name sought must be in the second half of the phone book. The
second test (on the name "Terry") limited the search to the third quarter of the entire
array.

13.1.1 An iterative binary search routine

The binary search algorithm for finding a key value in an array uses two indices that
determine the array range wherein the desired element must be located. (Of course, it is
possible that the element sought is not present! A binary search routine has to be able
to deal with this eventuality as well.) If the array has N elements, then these low and
high indices are set to 0 and N-1.

The iterative part involves picking an index midway between the current low and
high limits. The data value located at this midway point is compared with the desired
key. If they are equal, the data has been found and the routine can return the midway
value as the index of the data.

If the value at the midway point is lower than that sought, the low limit should be
increased. The desired data value must be located somewhere above the current
midway point. So the low limit can be set one greater than the calculate midway point.
Similarly, if the value at the midway point is too large, the high limit can be lowered so
that it is one less than the midway point.

Each iteration halves the range where the data may be located. Eventually, the
required data are located (if present in the array). If the sought key does not occur in
the array, the low/high limits will cross (low will exceed high). This condition can be
used to terminate the loop.

A version of this binary search for character strings is:

Binary search 421

typedef char Name[32];

int BinarySearch(const Name key, const Name theNames[], int
num)
{

int low = 0;
int high = num - 1;

while(low<=high) {
int midpoint = (low + high) / 2;
int result = strcmp(key, theNames[midpoint]);

if(result == 0)
return midpoint;

if(result < 0)
high = midpoint - 1;

else
low = midpoint + 1;

}
return -1;

}

The function returns the index of where the given key is located in the array argument.
The value -1 is returned if the key is not present. The strings are compared using
strcmp() from the string library. Versions of the algorithm can be implemented for
arrays of doubles (the comparison test would then be expressed in terms of the normal
greater than (>), equals (==) and less than (<) operators).

Binary search is such a commonly used algorithm that it is normally packaged in
stdlib as bsearch(). The stdlib function is actually a general purpose version that can
be used with arrays of different types of data. This generality depends on more
advanced features of C/C++.

13.1.2 Isn't it a recursive problem?

The binary search problem fits well with the "recursive" model of problem solving
(section 4.8). You can imagine the binary search problem being solved by a
bureaucracy of clerks. Each clerk follows the rules:

look at the array you've been given, if it has no elements
report failure

else
look at the midpoint of your array,
if this contains the sought value then report success
else
if the midpoint is greater than the sought value

pass the bottom half of your array to the next clerk

422 Standard Algorithms

asking him to report whether the data are
present

report whatever the next clerk said
else

pass the top half of your array to the next clerk
asking him to report whether the data are

present
report whatever the next clerk said

This version is also easy to implement. Typically, a recursive solution uses a
"setting up function" and a second auxiliary function that does the actual recursion. The
recursive routine starts with the termination test (array with no elements) and then has
the code with the recursive calls. This typical style is used in the implementation:

int AuxRecBinSearch(const Name key, const Name theNames[],
int low, int high)

{
if(low > high)

return -1;

int midpoint = (low + high) / 2;

int result = strcmp(key, theNames[midpoint]);

if(result == 0)
return midpoint;

else
if(result < 0)

return AuxRecBinSearch(key, theNames,
low, midpoint-1);

else
return AuxRecBinSearch(key, theNames,

midpoint + 1, high);
}

int RecBinarySearch(const Name key, const Name theNames[],
int num,)

{
return AuxRecBinSearch(key, theNames, 0, num-1);

}

In this case, the recursive solution has no particular merit. On older computer
architectures (with expensive function calls), the iterative version would be much faster.
On a modern RISC architecture, the difference in performance wouldn't be as marked
but the iterative version would still have the edge.

Essentially, binary search is too simple to justify the use of recursion. Recursive
styles are better suited to situations when there is reasonable amount of work to do as
the recursion is unwound (when you have to do something to the result returned by the

Test for "empty"
array

Success, have found
item

Recursive call to
search bottom half of

array
Recursive call to

search top half of
array

The "setting up"
function

Recursive implementation of binary search 423

clerk to whom you gave a subproblem) or where the problem gets broken into separate
parts that both need to be solved by recursive calls.

13.1.3 What was the cost?

The introduction to this section argued that binary search was going to be better than
linear search. But how much better is it?

You can get an idea by changing the search function to print out the names that get
examined. You might get output something like:

Meadows
Terry
Romanows
Smith
Stone
Sreckovic

In this case, six names were examined. That is obviously better than checking "Aavik",
"Abbas", "Abbot", "Abet", …; because the linear search would involve examination of
hundreds (thousands maybe) of names.

Of course, if you wanted the name Terry, you would get it in two goes. Other names
might take more than six steps. To get an idea of the cost of an algorithm, you really
have to consider the worst case.

The binary search algorithm can be slightly simplified by having the additional
requirement that the key has to be present. If the array has only two elements, then a
test against element [0] determines the position of the key; either the test returned
"equals" in which case the key is at [0], or the key is at position [1]. So one test picks
from an array size of 2. Two tests suffice for an array size of 4; if the key is greater
than element [1] then a second test resolves between [2] and [3]. Similarly, three
tests pick from among 8 (or less elements).

Tests Number of items can pick from
1 2
2 4
3 8
4 16
… …
… …
? N

In general, k tests are needed to pick from 2k items. So how many tests are needed to
pick from an array of size N?

You need:

424 Standard Algorithms

2k ≥ N

This equation can be solved for k. The equation is simplified by taking the logarithm of
both sides:

k log(2) = log(N)

You can have logarithms to the base 10, or logs to any base you want. You can have
logarithms to the base 2. Now log2(2) is 1. This simplifies the equation further:

number of tests needed = k = log2(N) = lg(N)

The cost of the search is proportional to the number of tests, so the cost of binary
search is going to increase as O(lg(N)). Now a lg(N) rate of growth is a lot nicer than
linear growth :

10 3.3
50 5.6
100 6.6
250 7.9
500 8.9
1000 9.9
5000 12.2
10000 13.2
50000 15.6
100000 16.6
500000 18.9
1000000 19.9

A linear search for a key in a set of a million items could (in the worst case) involve you
in testing all one million. A binary search will do it in twenty tests.

Of course, there is one slight catch. The data have to be in order before you can do
binary search. You are going to have to do some work to get the data into order.

13.2 ESTABLISHING ORDER

Sometimes, you get data that are relatively easy to put into order. For example,
consider a class roll ordered by name that identifies pupils and term marks (0 … 100):

Armstrong, Alice S. 57
Azur, Hassan M. 64
Bates, Peter 33
…
Yeung, Chi Wu 81
Young, Paula 81

Establishing order 425

A common need would be a second copy of these data arranged in increasing order by
mark rather than by name.

You can see that a pupil with a mark of 100 would be the last in the second
reordered array, while any getting 0 would be first. In fact, you can work out the
position in the second array appropriate for each possible mark.

This is done by first checking the distribution of marks. For example, the lowest
recorded mark might be 5 with two pupils getting this mark; the next mark might be 7,
then 8, each with one pupil. Thus the first two slots in the reordered copy of the array
would be for pupils with a mark of 5, the next for the pupil with mark 7, and so on.
Once this distribution has been worked out and recorded, you can run through the
original list, looking at each pupil's mark and using the recorded details of the
distribution to determine where to place that pupil in the reordered array. The following
algorithm implements this scheme:

1. Count the number of pupils with each mark (or, more generally, the number of
"records" with each "key").

These counts have to be stored in an array whose size is determined by the range of
key values. In this case, the array has 101 elements (mark_count[0] …
mark_count[100]). The data might be something like

Mark 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, …
mark_count 0, 0, 0, 0, 0, 2, 0, 1, 1, 0, …

2. Change the contents of this mark_count array so that its elements record the
number of pupils with marks less than or equal to the given mark.

i.e. code something like:

for(i=1; i<101;i++)
mark_count[i] += mark_count[i-1];

Mark 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, …
mark_count 0, 0, 0, 0, 0, 2, 2, 3, 4, 4, …

3. Run through the array of pupils, look up their mark in the mark_count array. This
gives their relative position in the reordered array (when implementing, you have to
remember C's zero-based arrays where position 2 is in [1]). The data should be
copied to the other array. Then the mark_count entry should be reduced by one.

For example, when the first pupil with mark 5 is encountered, the mark_count
array identifies the appropriate position as being the 2nd in the reordered array (i.e.
element [1]). The mark_count array gets changed to:

426 Standard Algorithms

mark_count 0, 0, 0, 0, 0, 1, 2, 3, 4, 4, …

so, when the next pupil with mark 5 is found his/her position can be seen to be the
first in the array (element [0]).

An implementation of this algorithm is:

typedef char Name[40];
…

void MakeOrderedCopy(const Name names[], const int marks[],
int num,
Name ord_names[], int ord_marks[])

{
int mark_count[101];

for(int i = 0; i< 101; i++)
mark_count[i] = 0;

// Count number of occurrences of each mark
for(i = 0; i < num; i++) {

int mark = marks[i];
mark_count[mark]++;

}

// Make that count of number of pupils with marks less than
// or equal to given mark

for(i=1; i<101; i++)
mark_count[i] += mark_count[i-1];

for(i=0; i < num; i++) {
int mark = marks[i];
int position = mark_count[mark];
position--; // correct to zero based array
// copy data
strcpy(ord_names[position], names[i]);
ord_marks[position] = marks[i];
// update mark_count array
mark_count[mark]--;

}
}

Note how both data elements, name and mark, have to be copied; we have to keep
names and marks together. Since arrays can not be assigned, the strcpy() function
must be used to copy a Name.

The function can be tested with the following code:

#include <iostream.h>
#include <iomanip.h>

Initialize counts for
keys (marks)

Get frequencies of
each key (mark)

Turn counts into
"positions"

Copy data across into
appropriate positions

Establishing order 427

#include <string.h>

typedef char Name[40];

Name pupils[] = {
"Armstrong, Alice S.",
"Azur, Hassan M.",
"Bates, Peter",
…
…
"Ward, Koren",
"Yeung, Chi Wu",
"Young, Paula",
"Zarra, Daniela"

};

int marks[] = {
57, 64, 33, 15, 69, 61, 58,
…
45, 81, 81, 78

};

int num = sizeof(marks) / sizeof(int);
int num2 = sizeof(pupils) /sizeof(Name);

int main()
{

Name ordnms[500];
int ordmks[500];
MakeOrderedCopy(pupils, marks, num, ordnms, ordmks);
cout << "Class ordered by names: " << endl;
for(int i = 0; i< num; i++)

cout << setw(40) << pupils[i] << setw(8)
<< marks[i] << endl;

cout << "\n\nOrdered by marks:" << endl;
for(i = 0; i< num; i++)

cout << setw(40) << ordnms[i] << setw(8)
<< ordmks[i] << endl;

return 0;
}

which produces output like:

Class ordered by names:
 Armstrong, Alice S. 57
 Azur, Hassan M. 64
 Bates, Peter 33
…
…
 Yeung, Chi Wu 81
 Young, Paula 81

428 Standard Algorithms

 Zarra, Daniela 78

Ordered by marks:
 McArdie, Hamish 5
 Hallinan, Jack 5
…
…
 Young, Paula 81
 Yeung, Chi Wu 81
 Horneman, Sue 87
 Goodman, Jerry 91

These example data illustrate another minor point. The original list had Yeung and
Young in alphabetic order, both with mark 81. Since their marks were equal, there was
no need to change them from being in alphabetic order. However the code as given
above puts pupils with the same mark in reverse alphabetic order.

Sometimes, there is an extra requirement: the sorting process has to be "stable".
This means that records that have the same key values (e.g. pupils with the same mark)
should be left in the same order as they originally were.

It is easy to change the example code to achieve stability. All you have to do is
make the final loop run backwards down through the array:

for(i=num-1; i >= 0; i--) {
int mark = marks[i];
int position = mark_count[mark];
position--; // correct to zero based array
// copy data
strcpy(ord_names[position], names[i]);
ord_marks[position] = marks[i];
// update mark_count array
mark_count[mark]--;
}

This implementation is of course very specific to the given problem (e.g. the
mark_count array is explicitly given the dimension 101, it does not depend on a data
argument). The function can be made more general but this requires more advanced
features of the C/C++ language. Nevertheless, the code is simple and you should have
no difficulty in adapting it to similar problems where the items to be sorted have a
narrow range of keys and you want two copies of the data.

What is the cost?

To get an idea of the cost of this sorting mechanism, you have to look at the number of
times each statement gets executed. Suppose that num, the number of data elements,
was 350, then the number of times that each statement was executed would be as shown
below:

"Stable sorts"

Implementation
limitations

Establishing order 429

void MakeOrderedCopy(const Name names[], const int marks[],
int num,
Name ord_names[], int ord_marks[])

{
int mark_count[101];

for(int i = 0; i< 101; i++)
101 mark_count[i] = 0;

// Count number of occurrences of each mark
for(i = 0; i < num; i++) {

350 int mark = marks[i];
350 mark_count[mark]++;

}
// Make that count of number of pupils with marks
// less than or equal to given mark
for(i=1; i<101; i++)

101 mark_count[i] += mark_count[i-1];

for(i= 0; i < num; i++) {
350 int mark = marks[i];
350 int position = mark_count[mark];
350 position--; // correct to zero based array

// copy data
350 strcpy(ord_names[position], names[i]);
350 ord_marks[position] = marks[i];
350 mark_count[mark]--;

}
}

The costs of these loops is directly proportional to the number of times they are
executed. So the cost of this code is going to be proportional to the number of entries in
the array (or the range of the key if this was larger, the '101' loops would represent the
dominant cost if you had less than 100 records to sort).

This algorithm is O(N) with N the number of items to sort. That makes it a
relatively cheap algorithm.

13.3 A SIMPLE SORT OF SORT

The last example showed that in some special cases, you could take data and get them
sorted into order in "linear time". However, the approach used is limited.

There are two limitations. Firstly, it made a sorted copy of the data so that you had
to sufficient room in the computer's memory for two sets of data (the initial set with the
pupils arranged in alphabetic order, and the sorted set with them arranged by mark).
This is usually not acceptable. In most cases where it is necessary to sort data, you can't
have two copies of the entire data set. You may have one or two extra items (records)

Normally require
sorting "in situ"

430 Standard Algorithms

but you can't duplicate the whole set. Data have to be sorted "in situ" (meaning "in
place"); the original entries in the data arrays have to be rearranged to achieve the
required order.

The other simplifying factor that does not usually apply was the limited range of the
keys. The keys were known to be in the range 0…100. This made it possible to have
the mark_count[101] array. Usually the keys span a wider range, e.g. bank accounts
can (I suppose) have any value from -2000000000 to +2000000000. You can't allocate
an array equivalent to mark_count[101] if you need four thousand million entires.

When you don't have the special advantages of data duplication and limited key
range, you must use a general purpose sorting function and you will end up doing a lot
more work.

The late 1950s and early 1960s was a happy time for inventors of sorting algorithms.
They invented so many that the topic has gone quite out of fashion. There is a whole
variety of algorithms from simple (but relatively inefficient) to complex but optimized.
There are also algorithms that define how to sort data collections that are far too large to
fit into the memory of the computer . These "external sorts" were important back when
a large computer had a total of 32768 words of memory. Now that memory sizes are
much larger, external sorts are of less importance; but if you ever do get a very large set
of data you can dig out those old algorithms, you don't have to try to invent your own.

There is a fairly intuitive method for sorting the data of an array into ascending
order. The first step is to search through the array so as to select the smallest data
value; this is then exchanged for the data element that was in element [0]. The
second step repeats the same process, this time searching the remaining unsorted
subarray [1]…[N-1] so as to select its smallest element, which gets swapped for the
data value originally in [1]. The selection and swapping processes are repeated until
the entire array has been processed.

A version of this code, specialized to handle an array of characters is:

void SelectionSort(char data[], int n)
{

for(int i = 0; i < n-1; i++) {
int min = i;
for(int j=i+1; j<n; j++)

if(data[j] < data[min]) min = j;

char temp = data[min];
data[min] = data[i];
data[i] = temp;

}
}

The old cliche states "A picture is worth a thousand words"; so how about a few
pictures to illustrate how this sort process works. The following program uses the
curses package to draw pictures illustrating the progress of the sort:

Small range of key
values

Code to find index of
minimum value in

rest of array

Code to swap data
value with smallest

A simple sort 431

#include "CG.h"

char testdata[] = {
'a', 'r', 'g', 'b', 'd',
'i', 'q', 'j', 'm', 'o',
't', 'p', 'l', 's', 'n',
'f', 'c', 'k', 'e', 'h'

};

int n = sizeof(testdata) /sizeof(char);

void ShowArray()
{

CG_ClearWindow();
for(int i=0; i < n; i++) {

int x = i + 1;
int y = 1 + testdata[i] - 'a';
CG_PutCharacter(testdata[i], x, y);

}
CG_Prompt("continue>");
char ch = CG_GetChar();

}

void SelectionSort(char data[], int n)
{

ShowArray();
for(int i = 0; i < n-1; i++) {

int min = i;
for(int j=i+1; j<n; j++)

if(data[j] < data[min]) min = j;
char temp = data[min];
data[min] = data[i];
data[i] = temp;
ShowArray();

}
}

int main()
{

CG_Initialize();
SelectionSort(testdata, n);
CG_Reset();
return 0;

}

Figure 13.1 illustrates the output of this program.

What is the cost?

The cost is determined by the number of data comparisons and data exchanges that
must be done in that inner loop. If there are N elements in the array, then:

432 Standard Algorithms

a
 b
 c
 d
 e
 f
 g
 h
 i
 j
 k
 l
 m
 n
 o
 p
 q
 r
 s
 t

a
 b
 c
 d
 e
 f
 g
 h
 i
 j
 k
 l
 m
 n
 o
 p
 q
 r
 s
 t

a
 b
 c
 d
 e
 f
 g
 h
 i
 j
 k
 l
 m
 n
 o
 p
 q
 r
 s
 t

a
 b
 c
 d
 e
 f
 g
 h
 i
 j
 k
 l
 m
 n
 o
 p
 q
 r
 s
 t

Starting; 5 iterations; 10 iterations; Almost done.

Figure 13.1 Illustrating selection sort.

i iterations of j loop
0 N-1
1 N-2
2 N-3
… …

N-2 1

Each iteration of the j loop involves a comparison (and, if you are unlucky, an
assignment). The cost will be proportional to the sum of the work of all the j loops:

cost ∝ N − i()
i=1

i=N −1∑
It is an arithmetic progression and its sum is "first term plus last term times half the
number of terms:

(N-1 + 1) (N-1)/2

0.5N2 - 0.5N

The cost of this sorting process increases as the square of the number of elements.An N2 cost

Quicksort 433

13.4 QUICKSORT: A BETTER SORT OF SORT

An N2 sorting process is not that wildly attractive; doubling the number of elements
increases the run time by a factor of four. Since you know that a data element can be
found in an ordered array in time proportional to lg(N), you might reasonably expect a
sort process to be cheaper than N2. After all, you can think of "sorting" as a matter of
adding elements to an ordered set; you have N elements to add, finding the right place
for each one should be lg(N), so an overall cost of Nlg(N) seems reasonable.

That argument is a little spurious, but the conclusion is correct. Data can be sorted
in Nlg(N) time. There are some algorithms that guarantee an Nlg(N) behaviour. The
most popular of the sophisticated sorting algorithms does not guarantee Nlg(N)
behaviour; in some cases, e.g. when the data are already more or less sorted, its
performance deteriorates to N2. However, this "Quicksort" algorithm usually runs well.

13.4.1 The algorithm

Quicksort is recursive. It is one of those algorithms that (conceptually!) employs an
bureaucracy of clerks each of whom does a little of the work and passes the rest on to
its colleagues. The basic rules that the clerks follow are:

1 If you are given an array with one element, say that you have sorted it.

2 If you are given an array with several data elements, "shuffle them" into two
groups – one group containing all the "large" values and the other group with all
the "small" values. Pass these groups to two colleagues; one colleague sorts the
"large" values, the other sorts the "small" values.

Ideally, each clerk breaks the problem down into approximately equal sized parts so
that the next two clerks get similar amounts of work. So, if the first clerk in a group is
given the data:

37, 21, 12, 103, 82, 97, 64, 62, 62, 28, 44, 50, 33, 91

then (s)he splits this into:

37, 21, 12, 33, 50, 44, 28,

and

62, 62, 64, 97, 82, 103, 91

It is up to the next two clerks to sort out these subarrays.

434 Standard Algorithms

In the example just shown, the clerk knew "intuitively" that the best partitioning
value would be around 60 and moved values less than this into the "small" group with
the others in the "large" group. Usually, the best partitioning value is not known. The
scheme works even if a non-optimal value is used. Suppose that the first clerk picked
37, then the partitions could be:

33, 21, 12, 28

and

82, 97, 64, 62, 62, 103, 44, 50, 37, 91

The first partition contains the values less than 37, the second contains all values greater
than or equal to 37. The partitions are unequal in size, but they can still be passed on to
other clerks to process.

The entire scheme for dealing with the data is shown in Figure 13.2. The pattern of
partitions shown reflects the non-optimal choice of partitioning values. In this example,
it is quite common for the partitioning to separate just one value from a group of several
others rather than arranging an even split. This necessitates extra partitioning steps later
on. It is these deviations from perfect splitting that reduce the efficiency of Quicksort
from the theoretical Nlg(N) optimum.

How should the data be shuffled to get the required groups?
You start by picking the value to be used to partition the data, and for lack of better

information you might as well take the first value in your array, in this case 37. Then
you initialize two "pointers" – one off the left of the array, and one off the right end of
the array:

 37, 21, 12, 103, 82, 97, 64, 62, 62, 28, 44, 50, 33, 91
Left ⇑ ↑Right

Move the "right" pointer to the left until its pointing to a data value less than or equal to
the chosen partitioning value:

 37, 21, 12, 103, 82, 97, 64, 62, 62, 28, 44, 50, 33, 91
Left ⇑ ↑Right

Next, move the "left" pointer to the right until its pointing to a data value greater than or
equal to the partitioning value:

 37, 21, 12, 103, 82, 97, 64, 62, 62, 28, 44, 50, 33, 91
 Left ⇑ ↑Right

You have now identified a "small" value in the right hand part of the array, and a
"large" value in the left hand part of the array. These are in the wrong parts; so
exchange them:

Quicksort 435

37, 21, 12, 103, 82, 97, 64, 62, 62, 28, 44, 50, 33, 91

33, 21, 12, 28

82, 97, 64, 62, 62, 103, 44, 50, 37, 91

28, 21, 12

33

37, 50, 64, 62, 62, 44

103, 97, 82, 91

12, 21

28

12
--
21

37
--
50, 64, 62, 62, 44

91, 97, 82

103

44
--
64, 62, 62, 50

82
--
97, 91

50, 62, 62

64

12 21 28 33 37 44 50 62 62 64 82 91 97 103

33

37

44

50

62 62

64

82

91 97

103

91
--
97

50
--
62, 62

62
--
62

12 21

28

1

2

3

4

5 6

7

8

9

1 0

1 1 1 2

1 3 1 4

1 5

1 6 1 7

1 8 1 9

2 0

2 1

2 2

2 3 2 4

2 5 2 6

2 7

Figure 13.2 A bureaucracy of clerks "Quicksorts" some data. The circled numbers
identify the order in which groups of data elements are processed.

436 Standard Algorithms

 33, 21, 12, 103, 82, 97, 64, 62, 62, 28, 44, 50, 37, 91
 Left ⇑ ↑Right

Do it again. First move the right pointer down to a value less than or equal to 37;
then move the left pointer up to a value greater than or equal to 37:

 33, 21, 12, 103, 82, 97, 64, 62, 62, 28, 44, 50, 37, 91
 Left ⇑ ↑Right

Once again, these data values are out of place, so they should be exchanged:

 33, 21, 12, 28, 82, 97, 64, 62, 62, 103, 44, 50, 37, 91
 Left ⇑ ↑Right

Again move the right pointer down to a value less than 37, and move the left pointer
up to a greater value:

 33, 21, 12, 28, 82, 97, 64, 62, 62, 103, 44, 50, 37, 91
 ↑Right
 Left ⇑

In this case, the pointers have crossed; the "right" pointer is to the left of the "left"
pointer. When this happens, it means that there weren't any more data values that could
be exchanged.

The "clerk" working on this part of the problem has finished; the rest of the work
should be passed on to others. The data in the array up to the position of the "right"
pointer are those values less than the value that the clerk chose to use to do the
partitioning; the other part of the array holds the larger values. These two parts of the
array should be passed separately to the next two clerks.

The scheme works. The rules are easy enough to be understood by a bureaucracy of
clerks. So they are easy enough to program.

13.4.2 An implementation

The recursive Quicksort function takes as arguments an array, and details of the range
that is to be processed:

void Quicksort(int d[], int left, int right);

The details of the range will be given as the indices of the leftmost (low) and rightmost
(high) data elements. The initial call will specify the entire range, so if for example you
had an array data[100], the calling program would invoke the Quicksort() function
as:

Quicksort(data, 0, 99);

Quicksort 437

Subsequent recursive calls to Quicksort() will specify subranges e.g.
Quicksort(data, 0, 45) and Quicksort(data, 46, 99).

The partitioning step that splits an array into two parts (and shuffles data so one part
contains the "low" values) is sufficiently complex to merit being a separate function.
Like Quicksort() itself, this Partition() function needs to be given the array and
"left and right" index values identifying the range that is to be processed:

int Partition(int d[], int left, int right);

The Partition() function should return details of where the partition point is located.
This "split point" will be the index of the array element such that d[left] …

d[split_point] all contain values less than the value chosen to partition the data
values. Function Partition() has to have some way of picking a partitioning value;
it can use the value in the leftmost element of the subarray that it is to process.

The code for Quicksort() itself is nice and simple:

void Quicksort(int d[], int left, int right)
{

if(left < right) {
int split_pt = Partition(d,left, right);
Quicksort(d, left, split_pt);
Quicksort(d, split_pt+1, right);
}

}

If the array length is 1 (left == right), then nothing need be done; an array of one
element is sorted. Otherwise, use Partition() to shuffle the data and find a split
point and pass the two parts of the split array on to other incarnations of Quicksort().

The Partition() function performs the "pointer movements" described in the
algorithm. It actually uses to integer variables (lm = left margin pointer, and rm = right
margin pointer). These are intialized "off left" and "off right" of the subarray to be
processed. The partitioning value, val, is taken as the leftmost element of the
subarray.

int Partition(int d[], int left, int right)
{

int val =d[left];
int lm = left-1;
int rm = right+1;

The movement of the pointers is handled in a "forever" loop. The loop terminates
with a return to the caller when the left and right pointers cross.

Inside the for loop, the are two do … while loops. The first do … while moves
the right margin pointer leftwards until it finds a value less than or equal to val. The

Shuffle the data
Give the two
subarrays to two
assistants

Initialize val and
"left and right
pointers"

438 Standard Algorithms

second do … while loop moves the left margin pointer rightwards, stopping when it
finds a value greater than or equal to val.

If the left and right margin pointers have crossed, function Partition() should return
the position of the right margin pointer. Otherwise, a pair of misplaced values have
been found; these should be exchanged to get low values on the left and high values on
the right. Then the search for misplaced values can resume.

for(;;) {
do

rm--;
while (d[rm] > val);

do
lm++;

while(d[lm] < val);

if(lm<rm) {
int tempr = d[rm];
d[rm] = d[lm];
d[lm] = tempr;
}

else
return rm;

}
}

What does it cost?

If you really want to know what it costs, you have to read several pages of a theoretical
text book. But you can get a good idea much more simply.

The partitioning step is breaking up the array. If it worked ideally, it would keep
splitting the array into halves. This process has to be repeated until the subarrays have
only one element. So, in this respect, it is identical to binary search. The number of
splitting steps to get to a subarray of size one will be proportional to lg(N).

In the binary search situation, we only needed to visit one of these subarrays of size
one – the one where the desired key was located. Here, we have to visit all of them.
There are N of them. It costs at least lg(N) to visit each one. So, the cost is Nlg(N).
You can see from Figure 13.2 that the partitioning step frequently fails to split a
subarray into halves; instead it produces a big part and a little part. Splitting up the big
part then requires more partitioning steps. So, the number of steps needed to get to
subarrays of size one is often going to be greater than lg(N); consequently, the cost of
the sort is greater than Nlg(N).

In the worst case, every partition step just peels off a single low value leaving all the
others in the same subarray. In that case you will have to do one partitioning step for

Move right margin
pointer leftwards

Move left margin
pointer righwards

Exchange misplaced
data

Return if all done

Quicksort 439

the first element, two to get the second, three for the third, … up to N-1 for the last.
The cost will then be approximately

1 + 2 + 3 + … + (N-2) + (N-1)

or 0.5N2.

13.4.3 An enhanced implementation

For most data, a basic Quicksort() works well. But there are ways of tweaking the
algorithm. Many focus on tricks to pick a better value for partitioning the subarrays. It
is a matter of trade offs. If you pick a better partitioning value you split the subarrays
more evenly and so require fewer steps to get down to the subarrays of size one. But if
it costs you a lot to find a better partitioning value then you may not gain that much
from doing less partitions.

There is one tweak that is usually worthwhile when you have big arrays (tens of
thousands). You combine two sort algorithms. Quicksort() is used as the main
algorithm, but when the subarrays get small enough you switch to an alternative like
selection sort. What is small enough? Probably, a value between 5 and 20 will do.

The following program illustrates this composite sort (Borland users may have to
reduce the array sizes or change the "memory model" being used for the project):

#include <iostream.h>
#include <stdlib.h>

const int kSMALL_ENOUGH = 15;
const int kBIG = 50000; // Relying on int = long
int data[kBIG];

void SelectionSort(int data[], int left, int right)
{

for(int i = left; i < right; i++) {
int min = i;
for(int j=i+1; j<= right; j++)

if(data[j] < data[min]) min = j;
int temp = data[min];
data[min] = data[i];
data[i] = temp;

}
}

int Partition(int d[], int left, int right)
{

int val =d[left];
int lm = left-1;
int rm = right+1;

SelectionSort of a
subarray

Partition code

440 Standard Algorithms

for(;;) {
do

rm--;
while (d[rm] > val);

do
lm++;

while(d[lm] < val);

if(lm<rm) {
int tempr = d[rm];
d[rm] = d[lm];
d[lm] = tempr;
}

else
return rm;

}
}

void Quicksort(int d[], int left, int right)
{

if(left < (right-kSMALL_ENOUGH)) {
int split_pt = Partition(d,left, right);
Quicksort(d, left, split_pt);
Quicksort(d, split_pt+1, right);
}

else SelectionSort(d, left, right);
}

int main()
{

int i;
long sum = 0;
for(i=0;i <kBIG;i++)

sum += data[i] = rand() % 15000;

Quicksort(data, 0, kBIG-1);

int last = -1;
long sum2 = 0;
for(i = 0; i < kBIG; i++)

if(data[i] < last) {
cout << "Oh; the data aren't in order"

<< endl;
cout << "Noticed the problem at i = " << i

<< endl;
exit(1);
}

else {
sum2 += last = data[i];
}

if(sum != sum2) {

Quicksort driver

Call SelectionSort on
smaller subarrays

Get some data, with
lots of duplicates

Check the results!

Quicksort 441

cout << "Oh ...; we seem to have changed the data"
<< endl;

}

return 0;
}

13.5 ALGORITHMS, FUNCTIONS, AND SUBROUTINE
LIBRARIES

Searching and sorting – they are just a beginning.
For one of your more advanced computing science subjects you will get a reference

book like "Introduction to Algorithms" by Cormen, Leiserson, and Rivest (MIT press).
There are dozens of other books with similar titles, but the Cormen book will do (its
pseudo-code for the algorithms is correct which is more than can be said for the "code"
in some of the alternatives).

The Cormen book is fairly typical in content. Like most of the others, it starts with a
section on topics such as recurrence relations, probability, and complexity analysis.
Then it has several chapters on sorting and searching (things like binary search). The
sections on "searching" explore the use of the "tree structures" introduced in Chapter 21
in Part IV of this text. Hashing algorithms, touched on briefly in Chapter 18, may also
be covered in detail.

The algorithm books generally review "string processing". The most basic "string
processing" task is "find a word in a block of text". Some "string search" algorithm has
been implemented in the editor of your IDE; it does the work for the Edit/Search option.
This kind of string searching is relatively simple, you just have to match a word (e.g. a
misspelled keyword viod) against the text. Even so, there are a number of fairly
complex algorithms for doing this; algorithms that implement tricks to minimize the
work that must be done, and hence the time used to perform a search. In most IDE
editors, there are more powerful search facilities (you will probably never use them).
They may be called "grep" searches ("grep" was the name of an early program on Unix
that provided very elaborate mechanisms for searching text in files). A "grep" search
allows you to specify a pattern – "I want to find a word that starts with a capital letter,
contains two adjacent o's, and does not end in 'l'". There are algorithms that define
efficient ways of performing such searches.

In some texts, the string processing section also introduces algorithms for
"compressing" data files.

Usually, these books contain some "Graph algorithms". These graphs are not x,y
plots of functions. Rather, a graph represents a network – any kind of network; see
Figure 13.3. A graph is made up of things (represented as "nodes" or "vertices") that
are related (the "edges"). The nodes might represent cities, with the edges being
connecting air-routes; or they might be atoms, with the edges being bonds; or they
might be electrical components with the edges as wires. There are many properties of

Searching and
sorting

"String processing"

Graph algorithms

442 Standard Algorithms

graphs that have to be calculated, e.g. the distances between all pairs of cities, or the
shortest path, or the existence of cycles (rings) in a graph that represents a molecule.
Because graphs turn up in many different practical contexts, graph algorithms have
been extensively studied and there are good algorithmic solutions for many graph
related problems.

A

B

C

D

F

I

J

G

E

H

Some things you might need to
check:

Is the graph connected?

Can you reach all nodes from
 node E?

What cycles are there?

Identify all nodes you can reach
 in 3 steps from node G.
…

Figure 13.3 Graphs – networks of nodes and edges.

Searching, sorting, strings, and graphs; these are the main ingredients of the
algorithm books. But, there are algorithms for all sorts of problems; and the books
usually illustrate a variety of the more esoteric.

Suppose you had the task of making up a list of partners for a high school dance. As
illustrated in Figure 13.4 you would have groups of boys and girls. There would also be
links between pairs, each link going from a boy to a girl. Each link would indicate
sufficient mutual attraction that the pair might stay together all evening. Naturally,
some individuals are more attractive than others and have more links. Your task is to
pair off individuals to keep them all happy.

Figure 13.4 The bipartite matching (or "high school prom") problem. Find a way of
matching elements from the two sets using the indicated links.

Bipartite graph
matching

Quicksort 443

What would you do? Hack around and find your own ad hoc scheme? There is no
need. This is a standard problem with a standard solution. Of course, theoreticians
have given it an imposing name. This is the "bipartite graph matching" problem. There
is an algorithm to solve it; but you would never know if you hadn't flicked through an
algorithms book.

How about the problem in Figure 13.5? You have a network of pipes connecting a
"source" (e.g. a water reservoir) to a "sink" (the sewers?). The pipes have different
capacities (given in some units like cubic metres per minute). What is the maximum
rate that which water might flow out of the reservoir? Again, don't roll your own.
There is a standard algorithm for this one, Maximal Flow.

2200

900

1600

3800

700 1800

2400

400

3850

600

1000

700

300

2100

1700

1300

600

2200

1100
1100

750

Source

Sink

Figure 13.5 Maximal flow problem: what is the maximum flow from source to sink
through the "pipes" indicated.

Figure 13.6 illustrates the "package wrapping problem" (what strange things
academic computer scientists study!). In this problem, you have a large set of points (as
x,y coordinate pairs). The collection is in some random order. You have to find the
perimeter points.

Despite their five hundred to one thousand pages, the algorithms books are just are
beginning. There are thousands more algorithms, and implementations as C functions
or FORTRAN subroutines out there waiting to be used. The "Association for
Computing Machinery" started publishing algorithms in its journal "Communciations of
the ACM" back in the late 1950s. There is now a special ACM journal, ACM
Transactions on Mathematical Software, that simply publishes details of new algorithms
together with their implementation. In recent years, you could for example find how to
code up "Wavelet Transform Algorithms for Finite Duration Discrete Time Signals" or
a program to "Generate Niederreiter's Low Discrepancy Sequences".

The CACM libraries

444 Standard Algorithms

x

y

Given set of points

x

y

Find the perimeter

Figure 13.6 The "package wrapping" (convex hull) problem.

Several groups, e.g. Numerical Algorithms Group, have spent years collecting
algorithms and coded implementation for commonly needed things like "matrix
inversion", "eigenvalues", "ordinary differential equations", "fast fourier transforms"
and all the other mathematical processing requirements that turn up in scientific and
engineering applications. These numerical routines are widely applicable. Some
collections are commercially available; others are free. You may be able to get at the
free collections via the "netlib" service at one of ATT's computers.

Beyond these, each individual engineering and scientific group has established its
own library of functions. Thus, "Quanutm Chemists" have functions in their QCPE
library to calculate "overlap integrals" and "exchange integrals" (whatever these may
be).

These collections of algorithms and code implementations are a resource that you
need to be aware of. In later programs that you get to write, you may be able to utilize
code from these collections. Many of these code libraries and similar resources are
available over the World Wide Web (though you may have to search diligently to locate
them).

Numerical
algorithms

Discipline specific
function libraries

Surf the net

